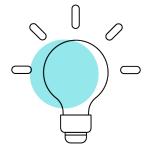


Topic Test Summer 2022


Pearson Edexcel GCE Mathematics (9MA0)

Paper 3 – Statistics

Topic 1: Regression lines (change of variable); hypothesis test for correlation

Contents

General guidance to Topic Tests	3
Revise Revision Guide content coverage	4
Questions	<u>5</u>
Mark Scheme	. 19

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:

www.pearson.com/uk

General guidance to Topic Tests

Context

• Topic Tests have come from past papers both <u>published</u> (those materials available publicly) and unpublished (those currently under padlock to our centres) presented in a different format to allow teachers to adapt them for use with candidates.

Purpose

- The purpose of this resource is to provide qualification-specific sets/groups of questions covering the knowledge, skills and understanding relevant to this Pearson qualification.
- This document should be used in conjunction with the advance information for the subject as well as general marking guidance for the qualification (available in published mark schemes).

Revise Revision Guide content coverage

The questions in this topic test have been taken from past papers, and have been selected as they cover the topic(s) most closely aligned to the <u>A level</u> advance information for summer 2022:

- Topic 1: Regression lines (change of variable); hypothesis test for correlation

The focus of content in this topic test can be found in the Revise Pearson Edexcel A level Mathematics Revision Guide. Free access to this Revise Guide is available for front of class use, to support your students' revision.

Contents	Revise Guide	Level
	page reference	
Pure Mathematics	1-111	A level
Statistics	112-147	A level
Mechanics	148-181	A level

Content on other pages may also be useful, including for synoptic questions which bring together learning from across the specification.

Questions

2.	Tessa owns a small clothes shop in a seaside town. She records the weekly sales figures, and the average weekly temperature, t° C, for 8 weeks during the summer. The product moment correlation coefficient for these data is -0.915	£w,
	(a) Stating your hypotheses clearly and using a 5% level of significance, test whether or not the correlation between sales figures and average weekly temperature is negative.	(3)
		(3)
	(b) Suggest a possible reason for this correlation.	(1)
	Tessa suggests that a linear regression model could be used to model these data.	(1)
	(c) State, giving a reason, whether or not the correlation coefficient is consistent with Tessa's suggestion.	
		(1)
	(d) State, giving a reason, which variable would be the explanatory variable.	(1)
	Tessa calculated the linear regression equation as $w = 10 755 - 171t$	
	(e) Give an interpretation of the gradient of this regression equation.	
		(1)

Question 2 continued	

3.	Barbara is investigating the relationship between average income (GDP per capita), x US and average annual carbon dioxide (CO ₂) emissions, y tonnes, for different countries.	dollars,
	She takes a random sample of 24 countries and finds the product moment correlation coefficient between average annual $\rm CO_2$ emissions and average income to be 0.446	
	(a) Stating your hypotheses clearly, test, at the 5% level of significance, whether or not the product moment correlation coefficient for all countries is greater than zero.	(3)
	Barbara believes that a non-linear model would be a better fit to the data. She codes the data using the coding $m = \log_{10} x$ and $c = \log_{10} y$ and obtains the model $c = -1.82 + 0.89m$	
	The product moment correlation coefficient between c and m is found to be 0.882	
	(b) Explain how this value supports Barbara's belief.	(1)
	(c) Show that the relationship between y and x can be written in the form $y = ax^n$ where a and n are constants to be found.	
	where a and h are constants to be found.	(5)
_		

Question 3 continued	

Question 3 continued	

Question 3 continued	

2. A random sample of 15 days is taken from the large data set for Perth in June and July 1987.

The scatter diagram in Figure 1 displays the values of two of the variables for these 15 days.

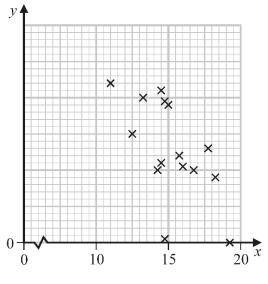


Figure 1

(a) Describe the correlation.

(1)

The variable on the x-axis is Daily Mean Temperature measured in ${}^{\circ}$ C.

- (b) Using your knowledge of the large data set,
 - (i) suggest which variable is on the y-axis,
 - (ii) state the units that are used in the large data set for this variable.

(2)

Stav believes that there is a correlation between Daily Total Sunshine and Daily Maximum Relative Humidity at Heathrow.

He calculates the product moment correlation coefficient between these two variables for a random sample of 30 days and obtains r = -0.377

- (c) Carry out a suitable test to investigate Stav's belief at a 5% level of significance. State clearly
 - your hypotheses
 - your critical value

(3)

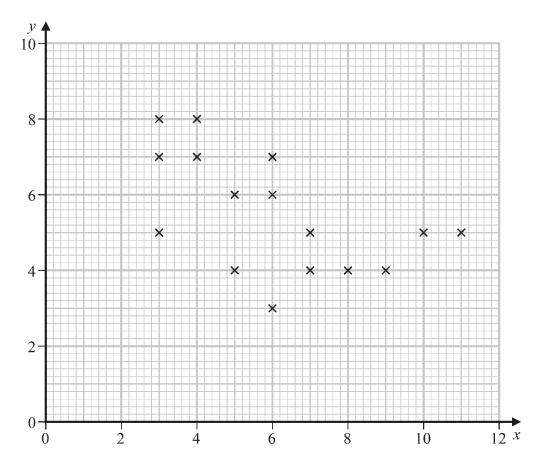
On a random day at Heathrow the Daily Maximum Relative Humidity was 97%

(d) Comment on the number of hours of sunshine you would expect on that day, giving a reason for your answer.

(1)

Question 2 continued		

Question 2 continued	


Question 2 continued	

lis resu	ts are s	shown	in the	escatte	er dia	gram (on the	next]	oage.						
a) Desc	ribe the	e corre	elation	betw	een x	and y	•							(1)
Marc su	gests t	hat pa	rents	with l	ong la	st nar	nes te	nd to g	give th	neir ch	ildrer	short	er firs	t nam	es.
b) Usin	g the so	catter	diagra	m con	nment	t on M	farc's	sugge	stion,	giving	g a rea	ason fo	or you	r	
answ	er.													(1	.)
The resu	lts fron	n Mar	c's rar	ndom :	sampl	e of 1	6 obse	rvatic	ns are	e giver	ı in th	e tabl	e belo		,
		1	1	ı	<u>r</u> -	1	1			1	1	1			
<i>x</i> 3	6	8	7	5	3	11	3	4	5	4	9	7	10	6	6
<i>y</i> 7	7	4	4	6	8	5	5	8	4	7	4	5	5	6	3
x and d) Test of le You	y for the whether ters in whould	these or not the la	data. ot ther st nan	re is er ne and	e prod vidend	luct m	nomen n nega	t corre	elation	coeff	icient	betwo	een	(1	
d) Test of le You • s	y for the whethe ters in	these or not the la	data. ot there st nan	re is er ne and	e prod vidend the n	luct m	nomen n nega	t corre	elation	coeff	icient	betwo	een	(1)
x and d) Test of le You • s	y for the whether ters in whould take you	these or not the la	data. ot there st nan	re is er ne and	e prod vidend the n	luct m	nomen n nega	t corre	elation	coeff	icient	betwo	een	(1)
x and d) Test of le You • s	y for the whether ters in whould take you	these or not the la	data. ot there st nan	re is er ne and	e prod vidend the n	luct m	nomen n nega	t corre	elation	coeff	icient	betwo	een	(1)
x and d) Test of le You • s	y for the whether ters in whould take you	these or not the la	data. ot there st nan oothese	re is er ne and	e prod vidend the n	luct m	nomen n nega	t corre	elation	coeff	icient	betwo	een	(1)
x and d) Test of le You • s	y for the whether ters in whould take you	these or not the la	data. ot there st nan oothese	re is er ne and	e prod vidend the n	luct m	nomen n nega	t corre	elation	coeff	icient	betwo	een	(1)
x and d) Test of le You • s	y for the whether ters in whould take you	these or not the la	data. ot there st nan oothese	re is er ne and	e prod vidend the n	luct m	nomen n nega	t corre	elation	coeff	icient	betwo	een	(1)
x and d) Test of le You • s	y for the whether ters in whould take you	these or not the la	data. ot there st nan oothese	re is er ne and	e prod vidend the n	luct m	nomen n nega	t corre	elation	coeff	icient	betwo	een	(1)
x and d) Test of le You • s	y for the whether ters in whould take you	these or not the la	data. ot there st nan oothese	re is er ne and	e prod vidend the n	luct m	nomen n nega	t corre	elation	coeff	icient	betwo	een	(1)

2. Marc took a random sample of 16 students from a school and for each student recorded

Question 2 continued.		

Question 2 continued.

Question 2 continued.	

Mark Scheme

Qu 2	Scheme	Marks	AO
(a)	$H_0: \rho = 0 \qquad H_1: \rho < 0$	B1	2.5
	Critical value: -0.6215 (Allow any cv in range $0.5 \le cv \le 0.75$)	M1	1.1a
	r < -0.6215 so significant result and there is evidence of a negative correlation between w and t	A1	2.2b
		(3)	
(b)	e.g. As temperature increases people spend more time on the beach and less time shopping (o.e.)	B1	2.4
(c)	Since r is close to -1 , it is consistent with the suggestion	(1) B1 (1)	2.4
(d)	t will be the explanatory variable since sales are likely to depend on the temperature	В1	2.4
(e)	Every degree rise in temperature leads to a drop in weekly earnings of £171	(1) B1 (1)	3.4
		(7 mar	ks)
(a)	Notes B1 for both hypotheses in terms of ρ		
(b)	 M1 for the critical value: sight of ± 0.6215 or any cv such that 0.5 < cv < 0.7 Al must reject H₀ on basis of comparing - 0.915 with - 0.6215 (if - 0.915 < is seen then A0 but may use r o and mention "negative", "correlation/relationship" and at least "w" and "t" B1 for a suitable reason to explain negative correlation using the context given e.g. "As temperature drops people are more likely to go shopping (than to e.g. "As temperature increases people will be outside rather than in shops." A mere description in context of negative correlation is B0 SO e.g. "As temperature increases people don't want to go shopping/buy clothege." "Less clothes needed as temp increases" is B0 	0.6215 .e. which the beach nes" is B0	1)"
(c)	B1 for a suitable reason e.g. "strong"/"significant"/"near perfect" "correlation", r close to 1 and saying it is consistent with the suggestion. Allow "yes" followed by the reason.		
(d)	B1 For identifying t and giving a suitable reason. Need idea that "w depends on t" or "w responds to t" or "t affects w" Allow t (temperature) affects the other variable etc Just saying "t is the independent variable" or "t explains change in w" is N. B. Suggesting causation is B0 e.g. "t causes w to decrease"		
(e)	B1 for a description that conveys the idea of rate per degree Celsius. Must have 171, condone missing "£" sign.		

Question	Schei	me	Marks	AOs
3(a)	$H_0: \rho = 0$ $H_1: \rho > 0$		B1	2.5
	Critical value 0.3438		M1	1.1a
	(0.446 > 0.3438) so there is evidence that the product moment correlation coefficient (pmcc) is greater than 0/there is positive correlation		A1	2.2b
			(3)	
(b)	The value is close(r) to 1 or there is strong(er) (positive) correlation		В1	2.4
			(1)	
(c)	$\log_{10} y = -1.82 + 0.89(\log_{10} x)$	$y = ax^n \rightarrow \log_{10} y = \log_{10} (ax^n)$	M1	1.1b
	$y = 10^{-1.82 + 0.89(\log_{10} x)}$	$\log_{10} y = \log_{10} a + \log_{10} x^n$	M1	2.1
	$y = 10^{-1.82} \times 10^{0.89 (\log_{10} x)}$	$\log_{10} y = \log_{10} a + n \log_{10} x$	M1	1.1b
	$ \frac{[=10^{-1.82} \times 10^{(\log_{10} x)^{0.89}}]}{y = 0.015x^{0.89}} $	$[\log_{10} a = -1.82, n = 0.89]$ $y = 0.015x^{0.89}$	A1A1	1.1b
	y = 0.013x	y = 0.015x		1.1b
			(5)	9 marks)
		Notes		<i>-</i>
(a) (b)	 B1: for both hypotheses correct in terms of ρ M1: for the critical value: sight of 0.3438 or any cv such that 0.25 < cv < 0.45 A1: a comment suggesting a significant result/ H₀ is rejected on the basis of seeing +0.3438 and which mentions "pmcc/correlation/relationship" and "greater than 0/positive" (not just ρ > 0) or an answer in context e.g. 'as "income"(o.e.) increases, "CO₂/emissions"(o.e.) increases' A contradictory statement scores A0 e.g. 'Accept H₀, therefore positive correlation' B1: for suitable reason e.g. r is close(r) to 1 or "strong(er)"/"near perfect" "correlation" Do not allow 'association' For both methods, once an M0 is scored, no further marks can be awarded 			
(c)	Method 1: (working to the model) M1: Correct substitution for both c and m (may be implied by 2^{nd} M1 mark) M1: Making y the subject to give an equation in the form $y = 10^{a+b(\log_{10} x)}$ (may be implied by 3^{rd} M1 mark) M1: Correct multiplication to give an equation in the form $y = 10^a \times 10^{b(\log_{10} x)}$ (this line implies M1M1M1 provided no previous incorrect working seen) Method 2: (working from the model) M1: Taking the log of both sides (may be implied by 2^{nd} M1 mark) M1: Correct use of addition rule (may be implied by 3^{rd} M1 mark) M1: Correct multiplication of power (this line implies M1M1M1 provided no previous incorrect working seen) A1: $n = 0.89$ or $a = awrt 0.015$ or $y = ax^{0.89}$ or $y = awrt 0.015x^n$ (dep on M3) A1: $n = 0.89$ and $a = awrt 0.015$ / $y = awrt 0.015x^{0.89}$ (dep on M3) do not award the final A1 if answer is given in an incorrect form e.g. $y = 0.015 + x^{0.89}$			

Qu 2	Scheme	Marks	AO	
(a)	Negative	B1	1.2	
(b)(i) (ii)	Rainfall or Pressure hPa or Pascals or hectopascals or mb or millibars	(1) B1 B1ft (2)	2.2b 1.1b	
(c)	$H_0: \rho = 0$ $H_1: \rho \neq 0$	B1	2.5	
	Critical value: $-0.361(0)$	M1	1.1b	
	r < -0.3610 so significant result and there is evidence of a correlation between Daily Total <u>Sunshine</u> and Daily Maximum Relative <u>Humidity</u>	A1	2.2b	
(1)		(3)		
(d)	Humidity is high and there is evidence of correlation and $r < 0$ So expect amount of sunshine to be <u>lower</u> than the <u>average</u> for Heathrow(oe)	B1	2.2b	
	than the <u>average</u> for freathfow(6e)	(1)		
		(7 mark	s)	
	Notes Notes			
(a)	B1 for stating negative. "Negative skew" is B0 though			
(b)(i)	B1 for mentioning "rainfall" (allow "rain" or "precipitation") or "pressure" (if more than 1 answer bot		correct)	
(ii)	NB the other quantitative variable for Perth is: Daily Mean Wind Speed and scores B0 [Not allowed "wind speed" since $r = +0.15$ and in winter might expect wind to raise temp]			
(c)	B1 for both hypotheses correct in terms of ρ M1 for the correct critical value compatible with their H ₁ : allow \pm 0.361(0) If the hypotheses are 1-tail then allow cv of \pm 0.3061 e.g. Alternative hypothesis with $r < \pm$ 0.377 implies a one-tail test or H ₀ a saying "H ₀ : there is no correlation, H ₁ : there is correlation" is two-tail If there are no hypotheses (or they are nonsensical) assume 2-tail so M1 from the second s			
	A1 for a correct conclusion in context based on comparing -0.377 with their cv. Condone incorrect inequality e.g. $-0.3610 < -0.377$ as long as they reject H ₀ Do not accept contradictory statements such as "accept H ₀ so there is evidence of" Can say "support for Stav's <u>belief</u> "(o.e.e.g. "claim") or "evidence of a correlation between <u>sunshine</u> and <u>humidity</u> " condone "negative correlation" or comments such as "if humidity is high amount of sunshine will be low"			
(d)	B1 for stating low amount of sunshine (o. e.) and some reference to r < 0 or f Check for the following 2 features: (i) low sunshine: allow ≤ 5 hrs (LDS mean for 2015 is 5.3, humidity 97% is (ii) negative correlation may be described in words e.g. "high humidity gives or fog (LDS says >95% humidity is foggy) so less	4.1, ≥97% s low sunsl	-	

Qu 2	Scheme	Mark	s AO
(a)	Negative	B1	1.2
(b)	Marc's suggestion is compatible because it's negative correlation	(1	1 1
		B1	2.4
(a)	(r =) -0.54458266 awrt -0.545	B1 (1) _{1.1b}
	(r=) -0.54458266 awrt -0.545	(1	I I
(d)	$H_0: \rho = 0$ $H_1: \rho < 0$	B1 `	2.5
	$[5\% \text{ 1-tail cv} =] (\pm) \text{ 0.4259}$	M1	1.1a
	(significant result / reject H_0) There <u>is</u> evidence of negative <u>correlation</u> between the <u>number of letters</u> in	A1	2.2b
	(or <u>length</u> of) a student's last <u>name</u> and their first <u>name</u>		
		(3)
		(6 ma	rks)
	Notes B1 for "negative" Allow "slight" or "weak" etc		
	Allow a description e.g. "as x increases y decreases" or in context e.g. "p last names tend to have shorter first names" A comment of "negative skew" is B0 Need to see distinct or separate responses for (a) and (b)		ur ronger
(b)	B1 for a comment that suggests data is compatible with the suggestion and a suitable reason such as "there is negative correlation" or a description in x and y or in context or the points lie close to a line with negative gradient or draw line $y = x$ and state that more points below the line so supports (or is compatible with) his suggestion A reason based on just a single point is B0 e.g. "11 letters in last name has only 5 in first name"		
(c)	B1 for awrt -0.545		
(d)	 B1 for both hypotheses correct in terms of ρ M1 for a critical value compatible with their H₁: 1-tail: awrt ± 0.426 (condone ± 0.425) or 2-tail (B0 scored for H₁): awr If hypotheses are in words and can deduce whether one or two-tail then If no hypotheses or their H₁ is not clearly one or two tail assume one-tail A1 for compatible signs between cv and r and a correct conclusion in conte correlation and number of letters or length and name (ft their value from Do NOT award this A mark if contradictory comments or working seen or comparison of 0.426 with significance level of 0.05 etc 	use their l xt menti n (c))	words.
NB	The M1A1 can be scored independently of the hypotheses		